Shop & Mediathek für Lehrkräfte
Bernoulli-Prozesse sind Zufallsversuche mit zwei möglichen Ausgängen. Der Film erläutert, wie man anhand des Galton-Bretts, des Baumdiagramms und des Pascalschen Dreiecks samt zugehöriger Rechenregeln die Wahrscheinlichkeit errechnen kann, dass man bei einer n-stufigen Bernoulli-Kette k Treffer erzielt.
Für die Multiplikation und die Division negativer Zahlen gibt es einige einfache Regeln, die der Film vorstellt: Man rechnet mit den Beträgen der Zahlen. Hat einer der Faktoren ein negatives Vorzeichen, ist das Ergebnis negativ, sind die Vorzeichen bei beiden Faktoren gleich, ist das Ergebnis positiv.
Alle geometrischen Figuren mit Ecken sind Vielecke, auch Polygone genannt. Der Film beschäftigt sich mit regelmäßigen Polygonen. Zunächst werden gleichseitige Dreiecke und Quadrate kurz betrachtet, dann wird gezeigt, wodurch man bei beliebigen Vielecken den Flächeninhalt und den Umfang ermitteln kann.
Damit eine Stichprobe für eine Hochrechnung oder eine Prognose auch repräsentativ ist, muss sie zufällig gewählt sein. Der Film gibt Beispiele aus dem Alltag und zeigt, dass es auch bei der Zufallsauswertung Fehler gibt. Entsprechend sind Prognosen auch nie wirklich gesichert, sondern nur wahrscheinlich.
Quadratische Gleichungen lassen sich unter gewissen Umständen einfach im Kopf lösen: Vor allem, wenn ganze Zahlen die Lösungen sind, lässt sich der Satz von Vieta relativ leicht anwenden. Wie dieser lautet und wie man ihn anwendet, wird in diesem Video an mehreren konkreten Beispielen demonstriert.
Bei der Eulerschen Zahl handelt es sich um eine wichtige mathematische Konstante. Dieser Rap beweist, dass sie irrational ist. Das gelingt mit dem indirekten Beweis und der Tatsache, dass die These, dass e rational sei, stets zu einem Widerspruch führt. Dank des Ohrwurms bleiben die Informationen im Kopf.
Es wird relativ selten bewiesen, dass Pi irrational ist. Dabei lässt sich dieser Beweis mithilfe der Integral- und der Differenzialrechnung leicht führen: Die Annahme, dass Pi rational sei, führt zu Widersprüchen. Der eingängige Rap sorgt dafür, dass die Zuschauer die Beweisführung nicht vergessen.
Es gibt eine große Menge an Konzepten für den Umgang mit komplexen Zahlen. Dieser Song gibt einen guten Überblick über die entsprechenden Formeln und erklärt, wie man sie leicht im Kopf behalten kann. Der Refrain bietet die Grundlagen, während die Details in den gerappten Strophen erläutert werden.
Die Auswirkungen von a und c sind in quadratischen Funktionen leicht zu erkennen: a streckt, staucht oder spiegelt den Graphen, c verschiebt ihn. Mit denen des b sieht es anders aus. Dieser Film erklärt, welche Verschiebungen b veranlasst und dass der Funktionswert an der Stelle 0 nicht geändert wird.
Exponentialfunktionen wachsen, wie der Name bereits sagt, exponentiell schnell. An die Geschwindigkeit des Wachstums der Fakultät reichen sie aber nicht heran. Dieser Film erläutert die Gründe und zeigt auf, was man noch alles erkennen kann, wenn man das Wachstum von Funktion und Fakultät genau betrachtet.
Die Mathematik-Software LaTeX kennt von Haus aus zunächst keine Umlaute. Es gibt aber gleich mehrere Möglichkeiten, wie man sie dem Programm "beibringen" kann. Im Video werden die Optionen vorgestellt und erklärt, dass es am verwendeten Editor liegen kann, wenn dennoch Fehlermeldungen angezeigt werden.
Anhand eines Ziegels mit Normalformat wird in diesem Video erklärt, was ein Euler-Ziegel ist: Er zeichnet sich dadurch aus, dass alle seine Kantenlängen und seine Seitendiagonalen ganzzahlig sind. Bislang ist unbewiesen, ob es den perfekten Euler-Ziegel gibt, in dem auch die Raumdiagonalen ganzzahlig sind.
Um den Sinus-Wert eines Winkels zu bestimmen, braucht man ein rechtwinkliges Dreieck mit bekannten Winkeln und Seitenlängen. Der Sinus ist das Verhältnis von Gegenkathete zu Hypotenuse. Es wird gezeigt, dass es relativ einfach ist, sich die Sinuswerte der Winkel mit 30 °, 45 °, 60° und 90° zu merken.
In diesem Video wird erklärt, was es mit dem Pascalschen Dreieck auf sich hat: Es lassen sich die Binomialkoeffizienten daraus ablesen. Nutzt man nur Nullen und Einsen im Pascalschen Dreieck, zeigen sich in den erstellten zugehörigen Grafiken selbstähnliche Strukturen, die das Sierpinski-Dreieck bilden.
Vertiefend zum vorangegangenen Erklärvideo "Schriftliches Wurzelziehen" werden hier zusätzliche Erläuterungen zu den einzelnen Schritten der Beispielrechnung gegeben: Unter anderem wird gezeigt, wie man die ungefähre Einordnung der einzelnen Schritte mithilfe der binomischen Formel vornehmen kann.
Man kann Konstanten sowohl in Summen als auch in Produkten ableiten. Dieser Song erläutert, wie das im jeweiligen Fall funktioniert. Die Schüler können sich durch den eingängigen Rap besser an die Regeln erinnern: Eine Konstante hat die Ableitung 0, und die Auswirkungen davon beschreibt das Lied genau.
Bei der Kombinatorik kann man schnell den Überblick verlieren. Dieser Rap-Song erklärt die wichtigen Formeln und Konzepte des Themas und erläutert sie an Beispielen aus dem Alltag: Lottoscheine, Wettläufe und Zahlenschlösser sind den Zuhörern bekannt, sodass sie die Anwendung der Kombinatorik verstehen.
Wie bearbeitet man lineare Funktionen? Dieser eingängige Rap erläutert das Ablesen von Nullstellen aus der Gleichung, den Anstieg der linearen Funktion, welchen Einfluss einzelne Parameter haben, wo die Schnittpunkte mit den Achsen liegen und wie man die Funktion mit nur zwei gegebenen Punkten findet.
Die meisten Nachkommastellen bei der Division mit Zahlen bis 9 sind relativ leicht zu merken, nur die der Division mit sieben fallen etwas aus dem Rahmen. Dieses Video zeigt die Muster auf, die sich darin verbergen, und bietet gute Eselsbrücken, mit denen man sich die Nachkommastellen leicht merken kann.
Es ist gut belegt, dass Pi irrational ist. Wie sehr allerdings, war auch in der jüngsten Geschichte noch Forschungsgegenstand. Das Video erklärt mit Animationen, wie man die Irrationalität einer reellen Zahl dadurch beschreiben kann, wie gut sie sich durch rationale Zahlen mit kleinem Nenner annähern lässt.
Die Teilbarkeitsregeln für 7 lassen sich etwas weniger leicht herleiten als die für andere Zahlen. Aber es gibt sie: Im Video werden mehrere von ihnen zunächst anhand von Beispielen vorgestellt und dann gezeigt, wie diese Verfahren sich in Formeln umwandeln lassen und daher ganz regelmäßig funktionieren.
Das metrische System hat einige Vorteile, wenn man innerhalb von Längeneinheiten umrechnen möchte. Der Film stellt die Einheiten Millimeter, Zentimeter, Dezimeter, Meter und Kilometer vor und demonstriert, wie man mittels Multiplikation und Division einfach innerhalb der Längeneinheiten rechnen kann.
Es gibt viele verschiedenen Größen, bei deren Umrechnung man sorgfältig vorgehen muss, um Fehler zu vermeiden. Der Film erklärt, welche Eigenschaften oder Zustände von physikalischen Objekten messbar sind und stellt verschiedene Maßeinheiten vor. Es werden zur Veranschaulichung Rechnungen vorgenommen.
Der Satz des Pythagoras ermöglicht verschiedene Berechnungen zu rechtwinkligen Dreiecken. Der Film zeigt anhand verschiedener Aufgaben aus dem Alltag, wie der Satz sich anwenden lässt. Außerdem werden die Kathetensätze und der Höhensatz erklärt, die auf den griechischen Mathematiker Euklid zurückgehen.
Zur Satzgruppe des Pythagoras zählen auch die Kathetensätze und der Höhensatz des Euklid. Im Film werden die Sätze durch den Flächenvergleich bewiesen. Es wird demonstriert, wie man ein Quadrat in ein flächengleiches Rechteck verwandelt. Außerdem wird der Nutzen der Sätze für den Alltag aufgezeigt.
Mit dem Satz des Thales lassen sich einfach verschiedene Flächen mit rechten Winkeln konstruieren, ohne dass dabei Messungen von Strecken oder Winkeln notwendig wären. Warum das so ist, wie man den Beweis für den Satz des Thales führt und wo dieser im Alltagsleben von Nutzen sein kann, zeigt der Film.
Mittels Geodreieck, Zirkel und den Kongruenzsätzen lassen sich eindeutige Dreiecke konstruieren, wenn bestimmte Angaben vorliegen. Der Film erklärt, dass es vier Regeln gibt, nach denen sich Dreiecke eindeutig konstruieren lassen. Er erläutert sss, sws, ssw und wsw und demonstriert ihre Anwendung.
In diesem Video präsentieren die LehrerBros eine Anleitung, mit der sich alle Optimierungs- oder Extremwertaufgaben berechnen lassen. Sie geben den Zuschauern Zeit, die Aufgabe zunächst selbst zu lösen, ehe sie dann Schritt für Schritt erklärend die Anleitung durchgehen und das Ergebnis präsentieren.
Auch wenn der Satz im Alltag nicht häufig Anwendung findet, wird hier in Liedform erklärt, dass die Wurzel aus 2 irrational ist. Es wird der ein Widerspruchsbeweis geführt und gezeigt, dass es keine Möglichkeit gibt, die Wurzel aus 2 in einem Bruch zu schreiben - was der Fall wäre, wäre sie rational.